Distributed Information Retrieval: an approach based on harvesting

Fabio Crestani°

In collaboration with Fabio Simeoni*, Murat Yakici* and Steve Neely*

*University of Strathclyde, Glasgow, UK
*University College of Dublin, Dublin, Ireland
°University of Lugano, Lugano, Switzerland
outline

- Problem Domain
 - content-based wide-area distributed Information Retrieval
- Approach
 - from distributed retrieval to index harvesting via metadata harvesting
- Design Strategies
 - expanding the OAI-PMH infrastructure: protocol applications and protocol extensions
- Conclusions
 - where next?
problem domain

- Information Retrieval (IR)
 - primary content, not metadata
 - unstructured content and queries
 - queries evaluated probabilistically, not deterministically

- Distributed IR (DIR)
 - content is distributed across mutually remote collections

- Wide-Area DIR
 - content collections are widely dispersed
 - latencies, bandwidth fluctuations, network failures, connectivity issues
 - content collections are autonomously managed
 - disparity of strength and motivations
distributed retrieval contd.

- **strategy**
 1. distribute process across its inputs
 - ‘push’ queries towards collections
 2. centralise remotely produced outputs
 - ‘pull’ results of local query executions

- **two phases**
 - synchronous
 - real-time wrt user interaction

- **common assumptions**
 - brokered client/server architectures
 - textual content
distributed retrieval contd.
distributed retrieval

contd.

- considerable amount of research
 - collection description, collection selection, result fusion
 - cooperative and uncooperative techniques
 - test-beds & evaluation

- hot areas
 - from client/server to peer-to-peer architectures
 - hybrid, multi-tiered
 - from textual to multi-media content
 - cf. MIND and PENG Projects
 - from ad-hoc to GRID-enabled infrastructures
 - cf. the DILIGENT Project

- applications
 - metasearch engines on the Web
 - Federated Digital Libraries
metadata harvesting

- from Z39.50…to the OAI-PMH

- strategy
 - centralise input in advance of process execution
 - incrementally and iteratively
 - execute process against its input
 - locally

- two phases
 - asynchronous
 - one batch, one real-time wrt user interaction

- common assumptions
 - input: manually authored, descriptive metadata records
 - queries: fielded and deterministically evaluated
metadata harvesting contd.
metadata harvesting contd.

- **technical advantages:**
 - wide-area not observable during service provision
 - consistency, reliability, responsiveness, effectiveness, generality, simplicity
 - encourages medium, medium-large scalability

- **sociological advantages:**
 - *data providers*: greater visibility
 - without cost of full service provision
 - even for sensitive and dynamically published data
 - *service providers*: wider reach

- **disadvantages:**
 - minimal cooperation required
 - input potentially stale

- …and yet a common assumption in large-scale DL developments
index harvesting

- strategy
 - centralise content statistics automatically generated at data providers…
 - e.g. term histograms
 - possibly filtered (e.g. stopword removal)
 - possibly normalised (e.g. stemming)
 - incrementally and iteratively
 - according to some exchange model
 - …as well as descriptive metadata records
 - according to some exchange model
 - ingest both into local index at service provider
 - possibly normalising statistics wrt to current index statistics
 - possibly enhancing/normalising metadata records
 - execute queries at service provider
 - against local index of remote collections
 - using the harvested metadata to present query results
index harvesting contd.
index harvesting

- between distributed retrieval and content crawling
 - some process is distributed…but indexing not retrieval
 - reap benefits of metadata harvesting
 - some data is centralised…but content statistics not content
 - more efficient bandwidth consumption
 - reduced load at data and service providers

- expand scope of content-based DIR research
 - content distribution need no longer imply distribution of retrieval or centralisation of content

- complement existing harvesting-based DL services
 - from metadata-based services to content-based services
 - leveraging the OAI-PMH infrastructure
 - a protocol application
 - a protocol extension
OAI-PMH recap

- client/server protocol for exchange of self-describing data
- 6 requests available to clients
 - 3 auxiliary requests, to discover server capabilities (Identify, ListMetadataFormats, ListSets)
 - 2 primary requests, to solicit data according to capabilities (GetRecord, ListRecords, ListIdentifiers)
- support for incremental harvesting
 - based on data time-stamping
- support for selective harvesting
 - based on hierarchies of potentially overlapping datasets
- support large data transfers in the face of transaction failures
 - simple session management mechanism based on resumption tokens
infrastructural issues outside protocol semantics
 - authentication, load balancing, compression, etc. resolved in a broader scope (e.g. at HTTP level)

abstract data model
 - servers maintain repositories of resources
 - resources have 1+ abstract descriptions, or items (basic unit of identification)
 - descriptions have 1+ format-specific instantiations, of records (basic unit of exchange and time-stamping)
 - support for Dublin Core mandatory
applying the OAI-PMH

- application strategy
 - extended data model
 - resources have at least one digital and text-based manifestation
 - one such manifestation, the *primary manifestation*, represents the resource content for harvesting purposes
 - dedicated format
 - for manually authored metadata *and* content statistics
 - statistics extracted from primary manifestation
- appealing solution…
 - no change to protocol and its development infrastructure
 - may serve immediately specific communities
- …but ad-hoc
 - different format for any combination of metadata and content statistics formats
 - need more modular, infrastructural approach
extending the OAI-PMH

- extension strategy
 - retain extended data model
 - identify metadata and content statistics independently
 - a record has now both a ‘metadata part’ and an ‘index part’
 - requests specify desired formats for both parts

- extension elements
 - extra auxiliary request `ListIndexFormats`
 - mirrors `ListMetadataFormats`
 - extra primary request parameter `indexPrefix`
 - mirrors `metadataPrefix`
 - extra `<index>` element to server responses
 - follows `<metadata>` element
 - sample format `tf_basic` for the index part
 - captures name and frequency of occurrence of indexing terms
evaluation

- proof-of-concept prototype
 - extensive testing
 - release of extended PMH to the OAI community
- testing
 - used the Aquaint TREC corpus across two institutions in different countries
 - tested the emulated heterogeneity of collections
 - tested the behaviour of incremental and periodical harvesting
 - efficiency
 - very small difference in resources required to index the global collection wrt index the harvested index data
 - effectiveness
 - same level of effectiveness of the global collection
conclusions

- **main points**
 - the harvesting model may be profitably applied to content-based retrieval
 - or there exists appealing middle ground between distributed retrieval and content crawling
 - the OAI-PMH infrastructure may be profitably leveraged for the purpose
 - immediately, via a protocol application
 - flexibly, via a protocol extension

- **future work**
 - exploit 2-phase model for asynchronous resource discovery in mobile and context-aware computing
question?

- more detailed presentation